

Table of Contents

- 1. Introduction
- 2. Problems & Past Solutions
- 3. Methodology
- 4. Models
- 5. Experiments
- 6. Conclusion

Introduction

Introduction Problems & Methodology Model Experiment Conclusion

Why is my topic important?

The high demand for travel

Introduction Problems & Methodology Model Experiment Conclusion

From Taiwan Tourism Administration https://stat.taiwan.net.tw/

國人出國目的地 Outbound Destination 🖸

統計範圍:113年1-3月累計

(Outbound departures of nationals in January-March 2024)

緬甸(Myanmar) 印度(India) 阿拉伯聯合大公國(UAE) 荷蘭(Netherlands) 捷克(Czech) 澳門(Macao) 義大利(Italy) 奧地利(Austria) 香港(Hong Kong) 馬來西亞(Malaysia) 德國(Germany) 中國大陸(China) 土耳其(Turkey) 加拿大(Canada) 印尼(Indonesia) 韓國(Korea) 泰國(Thailand) 美國(USA) 越南(Vietnam) 柬埔寨(Cambodia) 英國(U.K.) 澳洲(Australia) 新加坡(Singapore) 西班牙(Spain) 菲律賓(Philippines) 紐西蘭(New Zealand) 帛琉(Palau) 汶萊(Brunei) **1**,479,870 - 286,010 **2**75,770 - 75,730 **6**1,190 - 20,700 **1**8,190 - 13,130 13,110 - 3,430 2,610 - 100

In the post-pandemic era, People are eager to travel

Introduction Problems & Methodology Model Experiment Conclusion

High Travel Demand

High Travel Demand

Itinerary Problems

Problems & Past Solutions

Introduction Problems & Methodology Model Experiment Conclusion

Trip planning is time-consuming

Trip planning is time-consuming

Past solution: Collaborative filtering

Introduction Problems & Methodology Model Experiment Conclusion

Osaka --> Sapporo --> Tokyo

Introduction

- 1. Low flexibility
- 2. Poor Scalability

Introduction Problems & Past Solutions

Methodology

Model

Experiment

Conclusion

Deep Learning Solution!!

Your Guide to Understanding Artificial Intelligence (leasehawk.com)

Mr. Chiu's proposed a GAN architecture to address this problem

Prediction from a Model proposed in Mr. Chiu's Essay

Prediction from a Model proposed in Mr. Chiu's Essay

Model Prediction from Mr. Chiu's Essay

- 1. Inconsistent result
- 2. Noisy output

Objective:

Build a better model and improve the

training procedure

Methodology

Dataset

Introduction Problems & Problems & Methodology Model Experiment Conclusion

Solutions to Past Problems

Problem 1: Inconsistent result

Solution: remove the Gaussian noise.

Problem 2: Noisy output

Solution: change the loss function and training procedure.

Original Loss Function

Our Loss Function

The clue is given to the generator

Introduction Problems & Methodology Model Experiment Conclusion

Why is the problem solved?

The clue is given by the discriminator!

The instruction to the generator is given by the discriminator

Introduction Problems & Methodology Model Experiment Conclusion

Model

Fully Connected Neural Networks

Convolutional Neural Networks

Experiment

Fully Connected Neural Networks

Convolutional Neural Networks

Conclusion

Problems

- 1. Inconsistent result
- 2. Noisy output

Problems Solutions

- 1. Inconsistent result 1. G
- 2. Noisy output

- 1. Gaussian Noise removal
- Change of the training procedure

Introduction Problems & Methodology Model Experiment Concl
--

	Fully Connected Neural Network	Convolutional Neural Networks	Generative Adversarial Networks
Loss	1.9564	1.3548	1.4487

Q & A sessions