

目錄

User and Data Observations

- Feature Extraction
- Modeling
- Performance Analysis

Ask about experience

- Me : How do you use a Music App
- Friend: Search for a song I like and play it
- Me: And, after the song ends...?
- Friend: Let the next song be played.

Define the problem: The universal playlist?

- Sol: Find sessions where the same songs are played
- Implementation: If the first 20 songs in the testing set match those in the training set, the last 5 songs from the training set will be used as predictions.

Score for this method

Submission and Description	Private Score (i)	Public Score (i)	Selected
same_df_withNoneFilled.csv Complete (after deadline) · Autoencoder0621 · 37	0.15775	0.16242	

Define the problem: Who has many replays?

- Sol: Identify whether taking 20 songs as predictions is worth it
- Implementation : Clustering according to the number of unique songs

Steps

Cluster according to the number of unique songs

• Calculate how many come from the first 20.

Visualization

Result revealed for this method

Define the problem: How do transform input?

Sol: TF-IDF

 Implementation: Transform the first 20 songs' IDs and their corresponding metadata

Define the problem: High dimension and modeling?

- Sol : sparse metric(for storage)
- Implementation: using KNN and cosine similarity to calculate distance without using the similarity matrix.

Method 1(predicting by matching)

Method 2(predicting by frequency)

Submiss	sion and Description	Private Score (i)	Public Score ①	Selected
©	onlyFrequentlyPlayed.c Complete (after deadline) - Autoe	0.14145	0.14403	

Method 3(modeling)

Submission and Description	Private Score (i)	Public Score ①	Selected
modelPredictingResult.csv Complete (after deadline) · Autoencoder0621 ·	0.06008	0.05931	

The Amount of Data Used for different methods

